Grupo de Sistemas Electrónicos Industriales
Loading...
Date established
City
Country
ID
Description
17 results
Publication Search Results
Now showing 1 - 10 of 17
- PublicationA Control Stage for Parallel-Connected Interlinking Converters in Hybrid AC-DC Microgrids(Institute of Electrical and Electronics Engineers, 2023) Liberos Mascarell, María Antonia; González Medina, Raúl; Patrao Herrero, Iván; Torán Mort, Enric; Garcerá Sanfeliú, Gabriel; Figueres Amorós, Emilio; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería del Diseño; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos Industriales; AGENCIA ESTATAL DE INVESTIGACION[EN] Having two or more interlinking converters connected in parallel in hybrid microgrids has some benefits, like modularity, flexibility, and redundancy. However, the parallelization of the inverters leads to circulating currents that can cause system malfunctions. This work uses a method for suppressing low-frequency circulating currents in interlinking converters by controlling the zero-sequence component of the phase currents, showing that the control structure is valid for interlinking converters. The proposed control scheme has been applied to two parallel interlinking inverters of 5 kW and 2.5 kW, respectively. The interlinking inverters are connected to the grid, and they control the voltage in the DC bus of the hybrid microgrid. To validate the concept, simulation and experimental results are shown.
- PublicationDiseño y evaluación de un inversor de potencia de 220W para conexión a red de módulos fotovoltáicos de 24 a 40V(Universitat Politècnica de València, 2013-12-04) Patrao Herrero, Iván; Garcerá Sanfeliú, Gabriel; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos IndustrialesConsulta en la Biblioteca ETSI Industriales (7941)
- PublicationDC-Bus Signaling control laws for the operation of DC-microgrids with renewable power sources(IEEE, 2023) Patrao Herrero, Iván; Torán Mort, Enric; González Medina, Raúl; Liberos Mascarell, María Antonia; Figueres Amorós, Emilio; Garcerá Sanfeliú, Gabriel; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería del Diseño; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos Industriales; Agencia Estatal de Investigación; European Regional Development Fund; Ministerio de Asuntos Económicos y Transformación Digital[EN] DC-Bus Signaling (DBS) is a proven method to coordinate different microgrid agents, using the DC voltage of the microgrid as a communication signal. The droop control applied in a DC microgrid achieves accurate power-sharing among converters while leading to a certain voltage regulation error in the microgrid bus. The behaviour of the different agents in a microgrid is managed by using the voltage at each node of the microgrid as the DBS signal. The technique proposed in this paper uses an improved DBS technique to coordinate interlinking converters, photovoltaic generators, Energy Storage Systems and loads in a microgrid. The operation of the renewable power sources of a microgrid at the full generated power is desired due to economic and environmental reasons. The DBS technique proposed in this paper is adapted to integrate renewable power sources in the microgrid. The DBS-controlled Energy Storage Systems (ESS) will store the surplus energy if the generated power exceeds consumption. In the case of fully charged ESS, the renewable generators will limit their output power to those demanded by the loads. The proposed control laws have been tested in an experimental microgrid.
- PublicationA Control Scheme to Suppress Circulating Currents in Parallel-Connected Three-Phase Inverters(MDPI AG, 2022-11) Liberos Mascarell, María Antonia; González Medina, Raúl; Patrao Herrero, Iván; Garcerá Sanfeliú, Gabriel; Figueres Amorós, Emilio; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería del Diseño; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos Industriales; AGENCIA ESTATAL DE INVESTIGACION; European Regional Development Fund[EN] The parallel operation of inverters has many benefits, such as modularity and redundancy. However, the parallel connection of inverters produces circulating currents that may result in malfunctions of the system. In this work, a control technique for the elimination of the low-frequency components of the circulating currents in grid-connected inverters is presented. The proposed control structure contains n - 1 zero-sequence control loops, with n being the number of inverters connected in parallel. Simulation and experimental results have been carried out on a prototype composed of two 5 kW inverters connected in parallel. The results have been obtained by considering the following mismatches between both inverters: inductance values of the grid filters, unbalance of the delivered power, and the use of different modulation techniques.
- PublicationTransformerless topologies for grid-connected single-phase photovoltaic inverters(Elsevier, 2011-09) Patrao Herrero, Iván; Figueres Amorós, Emilio; González Espín, Francisco José; Garcerá Sanfeliú, Gabriel; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos Industriales; Ministerio de Ciencia e Innovación[EN] In order to improve the efficiency and reduce the cost of a photovoltaic system, the use of transformerless photovoltaic inverters is an alternative of increasing interest. However, this topology needs to be studied in detail, as it presents some problems related to the galvanic connection between the grid and the photovoltaic generator (e.g. efficiency degradation and safety problems). In this paper, a review of grid-connected single-phase photovoltaic inverters based on transformerless topologies has been carried out. On the one hand, some alternatives based on classical topologies have been presented. On the other hand, alternatives based on multi-level inverter topologies have been studied, showing up that no leakage current is generated in comparison to classical topologies. © 2011 Elsevier Ltd All rights reserved.
- PublicationIntegración de Convertidores Multinivel en Microrredes(Universitat Politècnica de València, 2011-11-29) Patrao Herrero, Iván; Figueres Amorós, Emilio; Garcerá Sanfeliú, Gabriel; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos IndustrialesEn el presente trabajo fin de Máster se aborda el diseño y simulación de un inversor fotovoltaico sin transformador, basado en la topología NPC, capaz de gestionar el punto de máxima potencia en 2 strings independientemente y de funcionar tanto en isla como conectado a red.
- PublicationMicrogrid architectures for low voltage distributed generation(Elsevier, 2015-03) Patrao Herrero, Iván; Figueres Amorós, Emilio; Garcerá Sanfeliú, Gabriel; González Medina, Raúl; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería del Diseño; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos Industriales; Ministerio de Economía y Competitividad[EN] The high penetration of distributed generators, most of them based on renewable energy sources, is modifying the traditional structure of the electric distribution grid. If the power of distributed generators is high enough to feed the loads of a certain area, this area could be disconnected from the main grid and operate in islanded mode. Microgrids are composed by distributed generators, energy storage devices, intelligent circuit breakers and local loads. In this paper, a review of the main microgrid architectures proposed in the literature has been carried out. The microgrid architectures are first classified regarding their AC or DC distribution buses. Besides, more complex microgrid architectures are shown. Both advantages and disadvantages of each one of the microgrid families are discussed.
- PublicationSynchronization of power inverters in islanded microgrids using an FM-modulated signal(Institute of Electrical and Electronics Engineers (IEEE), 2017-01) Patrao Herrero, Iván; González Medina, Raúl; Marzal-Romeu, Silvia; Garcerá Sanfeliú, Gabriel; Figueres Amorós, Emilio; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería del Diseño; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos Industriales; Ministerio de Economía y Competitividad; European Regional Development FundA microgrid can operate in island mode, isolated from the main grid during certain time intervals. When operated in island mode, the electronic converters of the microgrid must keep the voltage and frequency of the microgrid inside the desired range. The converters of a microgrid can be classified into three groups: 1) grid-feeding; 2) grid-supporting; and 3) grid-forming power converters. The grid-forming converters operate as a voltage source, and require an external synchronization signal provided by the microgrid central controller. Both the noise and the delay in the synchronization signals received by the grid-forming converters are critical issues, which deteriorate the quality of the microgrid voltage and may overload those converters. The synchronization signals must be robust and suitable for operating in noisy environments. In this paper, the synchronization signal is frequency-modulated to be transmitted, being robust against noise. The transmission is done through an industrial RS-485 line with a low delay. The demodulation is performed with a low computational load by the control processors of the grid-forming power converters.
- PublicationConcepción e integración en microrredes residenciales de inversores multinivel sin transformador de aislamiento con extracción simultánea de la máxima potencia de múltiples generadores fotovoltaicos(Editorial Universitat Politècnica de València, 2015-06-22) Patrao Herrero, Iván; Figueres Amorós, Emilio; Garcerá Sanfeliú, Gabriel; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos Industriales[EN] Multilevel inverters are being used in high-power applications, but the use of those topologies in small-power photovoltaic power plants presents some advantages. In this Thesis it is proposed a transformerless grid-connected single-phase photovoltaic inverter topology, called NPC+GCC, based on a multilevel topology. The characteristics of the NPC+GCC are of great interest for grid-connected transformerless inverters. It is demonstrated that that topology generates a very low capacitive leakage current, which is well below the limits stablished by the DIN VDE 0123-1-1 norm. The NPC+GCC topology permits the connection of a pair of photovoltaic sources on its input, getting the maximum power of both sources simultaneously. The efficiency of the power electronic converter is very high, since cascaded power stages are not used. This feature is of great interest in photovoltaic generation in urban areas because of the partial shadowing of the photovoltaic modules. Partial shadowing significantly deteriorates the energy harvesting. The double maximum power point tracking of the NPC+GCC reduces the effects of partial shadowing. Moreover, the inverter has been designed for working in distributed generation microgrids, an upcoming scenario. The main features of the inverter, transformerless and with a double maximum power point tracking, are especially relevant for power generation in the context of microgrids. The design has been validated by means of the construction and experimental study of an NPC+GCC converter with a nominal power of 5kW.
- PublicationDynamic modeling of a dual active bridge DC to DC converter with average current control and load-current feed-forward(Wiley, 2015-10) Guacaneme Moreno, Javier Antonio; Garcerá Sanfeliú, Gabriel; Figueres Amorós, Emilio; Patrao Herrero, Iván; González Medina, Raúl; Dpto. de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería del Diseño; Escuela Técnica Superior de Ingeniería Industrial; Grupo de Sistemas Electrónicos Industriales; Ministerio de Economía y CompetitividadBidirectional power flow is needed in many power conversion systems like energy storage systems, regeneration systems, power converters for improvement of the power quality and some DC-DC applications where bidirectional high power conversion and galvanic isolation are required. The dual active bridge (DAB) is an isolated, high voltage ratio DC-DC converter suitable for high power density and high power applications, being a key interface between renewable energy sources and energy storage devices. This paper is focused on the modeling and control design of a DC-DC system with battery storage based on a DAB converter with average current mode control of the output current and output voltage control. The dynamic response of the output voltage to load steps is improved by means of an additional load-current feed-forward control loop. An analytical study of the load-current feed-forward is presented and validated by means of both simulations and experimental results.