Jorda Moret, Jose Luis

Cargando...
Foto de perfil
Puesto de trabajo
Página personal Panorama
Nombre
Dirección de correo electrónico

Resultados de la búsqueda

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Publicación

Synthesis of a Novel Zeolite through a Pressure-Induced Reconstructive Phase Transition Process

2013-09, Jorda Moret, Jose Luis, Rey Garcia, Fernando, Sastre Navarro, German Ignacio, Valencia Valencia, Susana, Palomino Roca, Miguel, Corma Canós, Avelino, Segura Garcia del Rio, Alfredo, Errandonea, Daniel, Lacomba Perales, Raúl, Manjón Herrera, Francisco Javier, Gomis Hilario, Oscar, Kleppe, Annette K., Jephcoat, Andrew P., Amboage, Mónica, Rodríguez-Velamazán, J. Alberto, Departamento de Física Aplicada, Instituto Universitario Mixto de Tecnología Química, Escuela Técnica Superior de Ingeniería Aeroespacial y Diseño Industrial, Instituto de Diseño para la Fabricación y Producción Automatizada, Escuela Politécnica Superior de Alcoy, Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, Ministerio de Ciencia e Innovación, Generalitat Valenciana, Universitat Politècnica de València, Ministerio de Economía y Competitividad

The first pressure-induced solid-phase synthesis of a zeolite has been found through compression of a common zeolite, ITQ-29 (see scheme, Si yellow, O red). The new microporous structure, ITQ-50, has a unique structure and improved performance for propene/propane separation with respect the parent material ITQ-29.

Cargando...
Miniatura
Publicación

Cation Gating and Relocation during the Highly Selective Trapdoor Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho

2014-03-25, Lozinska, Magdalena M., Mowat, John P. S., Wright, Paul A., Thompson, Stephen P., Jorda Moret, Jose Luis, Palomino Roca, Miguel, Valencia Valencia, Susana, Rey Garcia, Fernando, Instituto Universitario Mixto de Tecnología Química, Ministerio de Ciencia e Innovación, Diamond Light Source, UK Research and Innovation, Ministerio de Economía y Competitividad

Adsorption of CO2 and CH4 has been measured on the Na-, K-, and Cs-forms of zeolite Rho (0 9 bar; 283 333 K). Although CH4 is excluded, CO2 is readily taken up, although the uptake at low pressures decreases strongly, in the order Na+ > K+ > Cs+. Structural studies by powder X-ray diffraction (PXRD) suggest that cations in intercage window sites block CH4 adsorption; however, in the presence of CO2, the cations can move enough to permit adsorption (several angstroms). Determination of time-averaged cation positions during CO2 adsorption at 298 K by Rietveld refinement against PXRD data shows that (i) in Na-Rho, there is a small relaxation of Na+ cations within single eight-ring (S8R) sites, (ii) in Cs-Rho, D8R cations move to S8R sites (remaining within windows) and two phases of Cs-Rho (I4̅3m, Im3̅m) are present over a wide pressure range, and (iii) in K-Rho, there is relocation of some K+ cations from window sites to cage sites and two phases coexist, each with I4̅3m symmetry, over the pressure range of 0 1 bar. The final cation distributions at high PCO2 are similar for Na-, K-, and Cs-Rho, and adsorption in each case is only possible by trapdoor -type cation gating. Complementary studies on K-chabazite (Si/Al = 3) also show changes in time-averaged cation location during CO2 adsorption.

Cargando...
Miniatura
Publicación

Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene

2017-11-24, Bereciartua-Pérez, Pablo Javier, Cantin Sanz, Angel, Corma Canós, Avelino, Jorda Moret, Jose Luis, Palomino Roca, Miguel, Rey Garcia, Fernando, Valencia Valencia, Susana, Corcoran Jr., Edward W., Kortunov, Pavel, Ravikovitch, Peter I., Burton, Allen, Yoon, Chris, Wang, Yu, Paur, Charanjit, Guzman, Javier, Bishop, Adeana R., Casty, Gary L., Instituto Universitario Mixto de Tecnología Química, European Regional Development Fund, Ministerio de Economía y Competitividad, ExxonMobil Research and Engineering Company

[EN] The discovery of new materials for separating ethylene from ethane by adsorption, instead of using cryogenic distillation, is a key milestone for molecular separations because of the multiple and widely extended uses of these molecules in industry. This technique has the potential to provide tremendous energy savings when compared with the currently used cryogenic distillation process for ethylene produced through steam cracking. Here we describe the synthesis and structural determination of a flexible pure silica zeolite (ITQ-55). This material can kinetically separate ethylene from ethane with an unprecedented selectivity of ~100, owing to its distinctive pore topology with large heart-shaped cages and framework flexibility. Control of such properties extends the boundaries for applicability of zeolites to challenging separations.