Berbel Tornero, Ana

Job Title
Last Name
Berbel Tornero
First Name
Ana
Personal page
Name
Email Address

Search Results

Now showing 1 - 2 of 2
  • Publication
    Regulation of Compound Leaf Development by PHANTASTICA in Medicago truncatula
    (American Society of Plant Biologists, 2014-01) Ge, Liangfa; Peng, Jianling; Berbel Tornero, Ana; Madueño Albi, Francisco; Chen, Ruijin; Instituto Universitario Mixto de Biología Molecular y Celular de Plantas; National Science Foundation, EEUU; Oklahoma Center for the Advancement of Science and Technology; Generalitat Valenciana
    [EN] Plant leaves, simple or compound, initiate as peg-like structures from the peripheral zone of the shoot apical meristem, which requires class I KNOTTED-LIKE HOMEOBOXI (KNOXI) transcription factors to maintain its activity. The MYB domain protein encoded by the ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) gene, together with other factors, excludes KNOXI gene expression from incipient leaf primordia to initiate leaves and specify leaf adaxial identity. However, the regulatory relationship between ARP and KNOXI is more complex in compound-leafed species. Here, we investigated the role of ARP and KNOXI genes in compound leaf development in Medicago truncatula. We show that the M. truncatula phantastica mutant exhibited severe compound leaf defects, including curling and deep serration of leaf margins, shortened petioles, increased rachises, petioles acquiring motor organ characteristics, and ectopic development of petiolules. On the other hand, the M. truncatula brevipedicellus mutant did not exhibit visible compound leaf defects. Our analyses show that the altered petiole development requires ectopic expression of ELONGATED PETIOLULE1, which encodes a lateral organ boundary domain protein, and that the distal margin serration requires the auxin efflux protein M. truncatula PIN-FORMED10 in the M. truncatula phantastica mutant.
  • Publication
    AUXIN RESPONSE FACTOR3 Regulates Compound Leaf Patterning by Directly Repressing PALMATE-LIKE PENTAFOLIATA1 Expression in Medicago truncatula
    (Frontiers Media SA, 2017-09-20) Peng, Jianling; Berbel Tornero, Ana; Madueño Albi, Francisco; Chen, Rujin; Instituto Universitario Mixto de Biología Molecular y Celular de Plantas; Generalitat Valenciana; Samuel Roberts Noble Foundation; National Science Foundation, EEUU; European Regional Development Fund; Ministerio de Economía y Competitividad; Oklahoma Center for the Advancement of Science and Technology
    [EN] Diverse leaf forms can be seen in nature. In Medicago truncatula, PALM1 encoding a Cys(2) His(2) transcription factor is a key regulator of compound leaf patterning. PALM1 negatively regulates expression of SGL1, a key regulator of lateral leaflet initiation. However, how PALM1 itself is regulated is not yet known. To answer this question, we used promoter sequence analysis, yeast one-hybrid tests, quantitative transcription activity assays, ChIP-PCR analysis, and phenotypic analyses of overexpression lines and mutant plants. The results show that M. truncatula AUXIN RESPONSE FACTOR3 (MtARF3) functions as a direct transcriptional repressor of PALM1. MtARF3 physically binds to the PALM1 promoter sequence in yeast cells. MtARF3 selectively interacts with specific auxin response elements (AuxREs) in the PALM1 promoter to repress reporter gene expression in tobacco leaves and binds to specific sequences in the PALM1 promoter in vivo. Upregulation of MtARF3 or removal of both PHANTASTICA (PHAN) and ARGONAUTE7 (AGO7) pathways resulted in compound leaves with five narrow leaflets arranged in a palmate-like configuration. These results support that MtARF3, in addition as an adaxial-abaxial polarity regulator, functions to restrict spatiotemporal expression of PALM1, linking auxin signaling to compound leaf patterning in the legume plant M. truncatula.