González Martínez, Antonio Javier

Cargando...
Foto de perfil
Puesto de trabajo
ORCID
Página personal Panorama
Nombre
Dirección de correo electrónico

Resultados de la búsqueda

Mostrando 1 - 10 de 30
  • Publicación
    Calibration of Gamma Ray Impacts in Monolithic-Based Detectors Using Voronoi Diagrams
    (Institute of Electrical and Electronics Engineers, 2020-05) Freire, Marta; Gonzalez-Montoro, Andrea; Sánchez Martínez, Filomeno; Benlloch Baviera, Jose María; González Martínez, Antonio Javier; Instituto de Instrumentación para Imagen Molecular; European Commission; Ministerio de Economía y Competitividad
    [EN] Molecular imaging systems, such as positron emission tomography (PET), use detectors providing energy and a 3-D interaction position of a gamma ray within a scintillation block. Monolithic crystals are becoming an alternative to crystal arrays in PET. However, calibration processes are required to correct for nonuniformities, mainly produced by the truncation of the scintillation light distribution at the edges. We propose a calibration method based on the Voronoi diagrams. We have used $50 \times 50 \times 15$ mm(3) LYSO blocks coupled to a $12\times 12$ SiPMs array. We have first studied two different interpolation algorithms: 1) weighted average method (WAM) and 2) natural neighbor (NN). We have compared them with an existing calibration based on 1-D monomials. Here, the crystal was laterally black painted and a retroreflector (RR) layer added to the entrance face. The NN exhibited the best results in terms of XY impact position, depth of Interaction, and energy, allowing us to calibrate the whole scintillation volume. Later, the NN interpolation has been tested against different crystal surface treatments, allowing always to correct edge effects. Best energy resolutions were observed when using the reflective layers (12%-14%). However, better linearity was observed with the treatments using black paint. In particular, we obtained the best overall performance when lateral black paint is combined with the RR.
  • Publicación
    In-depth evaluation of TOF-PET detectors based on crystal arrays and the TOFPET2 ASIC
    (Elsevier, 2020-10-11) Lamprou, Efthymios; Sánchez Martínez, Filomeno; Benlloch Baviera, Jose María; González Martínez, Antonio Javier; Instituto de Instrumentación para Imagen Molecular; European Commission; Generalitat Valenciana; Ministerio de Economía y Competitividad
    [EN] In recent years high efforts have been devoted to enhance spatial and temporal resolutions of PET detectors. However, accurately combining these two main features is, in most of the cases, challenging. Typically, a compromise has to be made between the number of readout channels, scintillator type and size, and photosensors arrangement if aiming for a good system performance, while keeping a moderate cost. In this work, we have studied several detector configurations for PET based on a set of 8x8 Silicon Photomultiplier (SiPMs) of 3x3 mm(2) active area, and LYSO crystal arrays with different pixel sizes. An exhaustive evaluation in terms of spatial, energy and timing resolution was made for all detector configurations. In some cases, when using pixel sizes different than SiPM active area, a significant amount of scintillation light may spread among several SiPMs. Therefore, we made use of a calibration method considering the different SiPM timing contributions. Best Detector Time Resolution (DTR) of 156 ps FWHM was measured when using 3x3 mm(2) crystal pixels directly coupled to the 3x3 mm(2) SiPMs. However, when using 1.5 mm crystal pixels with the same photosensor array, although we could clearly resolve all crystal pixels, an average DTR of 250 ps FWHM was achieved. We also shed light in this work on the timing dependency of the crystal pixel and photosensor alignment.
  • Publicación
    Feasibility Study of a Small Animal PET Insert Based on a Single LYSO Monolithic Tube
    (Frontiers Media, 2018-11-28) González Martínez, Antonio Javier; Berr, Stuart S.; Cañizares-Ledo, Gabriel; Gonzalez-Montoro, Andrea; Orero Palomares, Abel; Correcher Salvador, Carlos; Rezaei, Ahmadreza; Nuyts, Johan; Sánchez Martínez, Filomeno; Majewski, Stan; Benlloch Baviera, Jose María; Instituto de Instrumentación para Imagen Molecular; European Commission; Ministerio de Economía y Competitividad; Research Foundation Flanders; University of Virginia
    [EN] There are drawbacks with using a Positron Emission Tomography (PET) scanner design employing the traditional arrangement of multiple detectors in an array format. Typically PET systems are constructed with many regular gaps between the detector modules in a ring or box configuration, with additional axial gaps between the rings. Although this has been significantly reduced with the use of the compact high granularity SiPM photodetector technology, such a scanner design leads to a decrease in the number of annihilation photons that are detected causing lower scanner sensitivity. Moreover, the ability to precisely determine the line of response (LOR) along which the positron annihilated is diminished closer to the detector edges because the spatial resolution there is degraded due to edge effects. This happens for both monolithic based designs, caused by the truncation of the scintillation light distribution, but also for detector blocks that use crystal arrays with a number of elements that are larger than the number of photosensors and, therefore, make use of the light sharing principle. In this report we present a design for a small-animal PET scanner based on a single monolithic annulus-like scintillator that can be used as a PET insert in high-field Magnetic Resonance systems. We provide real data showing the performance improvement when edge-less modules are used. We also describe the specific proposed design for a rodent scanner that employs facetted outside faces in a single LYSO tube. In a further step, in order to support and prove the proposed edgeless geometry, simulations of that scanner have been performed and lately reconstructed showing the advantages of the design.
  • Publicación
    Pilot performance of a dedicated prostate PET suitable for diagnosis and biopsy guidance
    (SpringerOpen (part of Springer Nature), 2020-06-05) Cañizares-Ledo, Gabriel; Gonzalez-Montoro, Andrea; Freire, Marta; Lamprou, Efthymios; Barrio, John; Sánchez Martínez, Filomeno; Benlloch Baviera, Jose María; Hernandez, Liczandro; Moliner Martínez, Laura; Vidal San Sebastián, Luis Fernando; Torres, Irene; Sopena, Pablo; Vera-Donoso, Cesar D.; Bello, Pilar; Barbera, Julio; González Martínez, Antonio Javier; Instituto de Instrumentación para Imagen Molecular; European Commission; Generalitat Valenciana; European Regional Development Fund; Ministerio de Economía y Competitividad
    [EN] Background: Prostate cancer (PCa) represents one of the most common types of cancers facing the male population. Nowadays, to confirm PCa, systematic or multiparametric MRI-targeted transrectal or transperineal biopsies of the prostate are required. However, due to the lack of an accurate imaging technique capable to precisely locate cancerous cells in the prostate, ultrasound biopsies sample random parts of the prostate and, therefore, it is possible to miss regions where those cancerous cells are present. In spite of the improvement with multiparametric MRI, the low reproducibility of its reading undermines the specificity of the method. Recent development of prostatespecific radiotracers has grown the interest on using positron emission tomography (PET) scanners for this purpose, but technological improvements are still required (current scanners have resolutions in the range of 4¿5 mm). Results: The main goal of this work is to improve state-of-the-art PCa imaging and diagnosis. We have focused our efforts on the design of a novel prostate-dedicated PET scanner, named ProsPET. This system has small scanner dimensions defined by a ring of just 41 cm inner diameter. In this work, we report the design, implementation, and evaluation (both through simulations and real data) of the ProsPET scanner. We have been able to achieve < 2 mm resolution in reconstructed images and high sensitivity. In addition, we have included a comparison with the Philips Gemini-TF scanner, which is used for routine imaging of PCa patients. The ProsPET exhibits better contrast, especially for rod sizes as small as 4.5 mm in diameter. Finally, we also show the first reconstructed image of a PCa patient acquired with the ProsPET. Conclusions: We have designed and built a prostate specific PET system, with a small footprint and improved spatial resolution when compared to conventional whole-body PET scanners. The gamma ray impact within each detector block includes accurate DOI determination, correcting for the parallax error. The potential role of combined organdedicated prostate-specific membrane antigen (PSMA) PET and ultrasound devices, as a prebiopsy diagnostic tool, could be used to guide sampling of the most aggressive sites in the prostate.
  • Publicación
    Characterization of protons accelerated from a 3 TW table-top laser system
    (IOP Publishing, 2017-05) Bellido-Millán, Pablo Jesús; Lera, Roberto; Seimetz, Michael; Ruiz-de la Cruz, Alexandro; Torres Peiró, Salvador; Galán, M.; Mur, P.; Sánchez, I.; Zaffino, R.; Vidal San Sebastián, Luis Fernando; Soriano Asensi, Antonio; Sánchez-Góez, Sebastián; Sánchez Martínez, Filomeno; Rodríguez Álvarez, María José; Rigla, J.P.; Moliner Martínez, Laura; Iborra Carreres, Amadeo; Hernández Hernández, Liczandro; Grau-Ruiz, Daniel; González Martínez, Antonio Javier; García Garrigós, Juan José; Díaz Caballero, Elena; Conde-Castellanos, Pablo Eloy; Aguilar-Talens, Albert; Roso, Luis; Benlloch Baviera, Jose María; Departamento de Matemática Aplicada; Escuela Técnica Superior de Ingeniería Informática; Instituto de Instrumentación para Imagen Molecular; Ministerio de Economía y Competitividad; Ministerio de Ciencia e Innovación
    [EN] We report on benchmark tests of a 3 TW/50 fs, table-top laser system specifically developed for proton acceleration with an intrinsic pump rate up to 100 Hz. In two series of single-shot measurements differing in pulse energy and contrast the successful operation of the diode pumped laser is demonstrated. Protons have been accelerated up to 1.6 MeV in interactions of laser pulses focused on aluminium and mylar foils between 0.8 and 25 mu m thickness. Their spectral distributions and maximum energies are consistent with former experiments under similar conditions. These results show the suitability of our system and provide a reference for studies of laser targets at high repetition rate and possible applications.
  • Publicación
    Effect of noise in CT image reconstruction using QR- Decomposition algorithm
    (IEEE, 2013-11-02) Iborra, A.; Rodríguez Álvarez, María José; Soriano, A.; Sánchez Martínez, Filomeno; Bellido, P.; Conde, P.; Crespo, E.; González Martínez, Antonio Javier; Martos, F.; Moliner Martínez, Laura; Rigla, J. P.; Seimetz, Michael; Vidal San Sebastián, Luis Fernando; Benlloch Baviera, Jose María; Departamento de Matemática Aplicada; Escuela Técnica Superior de Ingeniería Informática; Instituto de Instrumentación para Imagen Molecular; Generalitat Valenciana; Ministerio de Ciencia e Innovación
    [EN] The QR-Decomposition algorithm for CT 3D image reconstruction uses a linear system of equations to model the CT system response. Linear systems have a condition number that can be used to estimate the image noise. In this work the number of projections and the number of pixels in the detector have been studied to characterize the CT and the linear system of equations. The condition number of the system is estimated for the previous parameters used to generate the CT model with the aim of characterizing how these parameters affect the condition number and therefore bound the image noise level. It is shown that the condition number mainly depends on the size of pixels of the detector rather than the number of projections and this algorithm can be applied to low dose CT 3D image reconstruction without compromising image quality
  • Publicación
    Innovative PET detector concept based on SiPMs and continuous crystals
    (Elsevier, 2012-12-11) González Martínez, Antonio Javier; Peiró Cloquell, Antonio; Sánchez Martínez, Filomeno; Vidal San Sebastián, Luis Fernando; Benlloch Baviera, Jose María; Instituto de Instrumentación para Imagen Molecular
    The use of Silicon Photomultipliers (SiPM) has been proposed for Positron Emission Tomography (PET) readout because they are hardly affected by magnetic fields and their time response enables Time of Flight measurements. This work proposes an array of SiPM to be coupled to a monolithic LYSO crystal by means of a series of optical devices. The emitted light distribution by the scintillation crystal will be accurately determined using an Application Specific Integrated Circuit. The described sensor block aims to determine the planar coordinates and depth of interaction of the gamma ray with sub-millimetrical precision. In this work we present the initial studies regarding edge effects due to thick monolithic crystals and how to overcome these limitations by means of optical devices namely faceplates and light concentrators. We will also discuss on the alignment of such optical devices with the SiPMs
  • Publicación
    Organ-Dedicated Molecular Imaging Systems
    (Institute of Electrical and Electronics Engineers, 2018-09) González Martínez, Antonio Javier; Sánchez Martínez, Filomeno; Benlloch Baviera, Jose María; Instituto de Instrumentación para Imagen Molecular; Ministerio de Economía y Competitividad
    [EN] In this review, we will cover both clinical and technical aspects of the advantages and disadvantages of organ specific (dedicated) molecular imaging (MI) systems, namely positron emission tomography (PET) and single photon emission computed tomography, including gamma cameras. This review will start with the introduction to the organ-dedicated MI systems. Thereafter, we will describe the differences and their advantages/disadvantages when compared with the standard large size scanners. We will review time evolution of dedicated systems, from first attempts to current scanners, and the ones that ended in clinical use. We will review later the state of the art of these systems for different organs, namely: breast, brain, heart, and prostate. We will also present the advantages offered by these systems as a function of the special application or field, such as in surgery, therapy assistance and assessment, etc. Their technological evolution will be introduced for each organ-based imager. Some of the advantages of dedicated devices are: higher sensitivity by placing the detectors closer to the organ, improved spatial resolution, better image contrast recovery (by reducing the noise from other organs), and also lower cost. Designing a complete ring-shaped dedicated PET scanner is sometimes difficult and limited angle tomography systems are preferable as they have more flexibility in placing the detectors around the body/organ. Examples of these geometries will be presented for breast, prostate and heart imaging. Recently achievable excellent time of flight capabilities below 300-ps full width at half of the maximum reduce significantly the impact of missing angles on the reconstructed images.
  • Publicación
    PET detector block with accurate 4D capabilities
    (Elsevier, 2018-12-21) Lamprou, Efthymios; Aguilar -Talens, Albert; Gonzalez-Montoro, Andrea; Monzó Ferrer, José María; Cañizares-Ledo, Gabriel; Iranzo-Egea, Sofía; Vidal San Sebastián, Luis Fernando; Hernández Hernández, Liczandro; Conde-Castellanos, Pablo Eloy; Sánchez-Góez, Sebastián; Sánchez Martínez, Filomeno; González Martínez, Antonio Javier; Benlloch Baviera, Jose María; Departamento de Ingeniería Electrónica; Escuela Técnica Superior de Ingeniería de Telecomunicación; Instituto de Instrumentación para Imagen Molecular; European Commission; Ministerio de Economía y Competitividad
    [EN] In this contribution, large SiPM arrays (8 x 8 elements of 6 x 6 mm(2) each) are processed with an ASIC-based readout and coupled to a monolithic LYSO crystal to explore their potential use for TOF-PET applications. The aim of this work is to study the integration of this technology in the development of clinical PET systems reaching sub-300 ps coincidence resolving time (CRT). The SiPM and readout electronics have been evaluated first, using a small size 1.6 mm (6 mm height) crystal array (32 x 32 elements). All pixels were well resolved and they exhibited an energy resolution of about 20% (using Time-over-Threshold methods) for the 511 keV photons. Several parameters have been scanned to achieve the optimum readout system performance, obtaining a CRT as good as 330 +/- 5 ps FWHM. When using a black-painted monolithic block, the spatial resolution was measured to be on average 2.6 +/- 0.5 mm, without correcting for the source size. Energy resolution appears to be slightly above 20%. CRT measurements with the monolithic crystal detector were also carried out. Preliminary results as well as calibration methods specifically designed to improve timing performance, are being analyzed in the present manuscript.
  • Publicación
    Detector block performance based on a monolithic LYSO crystal using a novel signal multiplexing method
    (Elsevier, 2018-12-21) González, A.; Sánchez Martínez, Filomeno; Martí, Rosana; Hernández Hernández, Liczandro; Aguilar-Talens, Albert; BARBERA BALLESTER, JULIO; CATRET MASCARELL, JUAN VICENTE; Cañizares-Ledo, Gabriel; Conde-Castellanos, Pablo Eloy; Lamprou, Efthymios; Martos Pedrosa, Francisco; Sánchez-Góez, Sebastián; Vidal San Sebastián, Luis Fernando; Benlloch Baviera, Jose María; González Martínez, Antonio Javier; Instituto de Instrumentación para Imagen Molecular; Ministerio de Economía y Competitividad
    [EN] Organ dedicated PET devices provide improved imaging performance when compared to whole body systems. The present study summarizes the test carried out to study a new detector block designed for an organ dedicated PET system. This block includes three novel components namely the scintillator geometry and a retroreflector layer coupled to the entrance face, the photosensor and the readout electronics. We used arrays of 12 x 12 SiPM photosensors with 3 x 3 mm(2) active area each and a pitch of 4.2 mm. We are proposing a new readout electronics that permits to reduce the 12 row and columns signals to only 8 without significant detector performance degradation. This approach also allows for resolving radioactive sources in the whole volume of the proposed crystal, significantly reducing the edge effect that typically rejects these events. An overall spatial resolution of about 1.8 mm FWHM is obtained for the whole scintillation volume, with an average energy resolution of 13% FWHM and a photon depth of interaction resolution (FWHM) of 3.7 mm. (C) 2018 Elsevier B.V. All rights reserved.