González Martínez, Antonio Javier
Cargando...
Unidades organizativas
Unidad organizativa
Puesto de trabajo
ORCID
Página personal
Página personal Panorama
Nombre
Dirección de correo electrónico
5 resultados
Resultados de la búsqueda
Mostrando 1 - 5 de 5
- PublicaciónCalibration of Gamma Ray Impacts in Monolithic-Based Detectors Using Voronoi Diagrams(Institute of Electrical and Electronics Engineers, 2020-05) Freire, Marta; Gonzalez-Montoro, Andrea; Sánchez Martínez, Filomeno; Benlloch Baviera, Jose María; González Martínez, Antonio Javier; Instituto de Instrumentación para Imagen Molecular; European Commission; Ministerio de Economía y Competitividad[EN] Molecular imaging systems, such as positron emission tomography (PET), use detectors providing energy and a 3-D interaction position of a gamma ray within a scintillation block. Monolithic crystals are becoming an alternative to crystal arrays in PET. However, calibration processes are required to correct for nonuniformities, mainly produced by the truncation of the scintillation light distribution at the edges. We propose a calibration method based on the Voronoi diagrams. We have used $50 \times 50 \times 15$ mm(3) LYSO blocks coupled to a $12\times 12$ SiPMs array. We have first studied two different interpolation algorithms: 1) weighted average method (WAM) and 2) natural neighbor (NN). We have compared them with an existing calibration based on 1-D monomials. Here, the crystal was laterally black painted and a retroreflector (RR) layer added to the entrance face. The NN exhibited the best results in terms of XY impact position, depth of Interaction, and energy, allowing us to calibrate the whole scintillation volume. Later, the NN interpolation has been tested against different crystal surface treatments, allowing always to correct edge effects. Best energy resolutions were observed when using the reflective layers (12%-14%). However, better linearity was observed with the treatments using black paint. In particular, we obtained the best overall performance when lateral black paint is combined with the RR.
- PublicaciónIn-depth evaluation of TOF-PET detectors based on crystal arrays and the TOFPET2 ASIC(Elsevier, 2020-10-11) Lamprou, Efthymios; Sánchez Martínez, Filomeno; Benlloch Baviera, Jose María; González Martínez, Antonio Javier; Instituto de Instrumentación para Imagen Molecular; European Commission; Generalitat Valenciana; Ministerio de Economía y Competitividad[EN] In recent years high efforts have been devoted to enhance spatial and temporal resolutions of PET detectors. However, accurately combining these two main features is, in most of the cases, challenging. Typically, a compromise has to be made between the number of readout channels, scintillator type and size, and photosensors arrangement if aiming for a good system performance, while keeping a moderate cost. In this work, we have studied several detector configurations for PET based on a set of 8x8 Silicon Photomultiplier (SiPMs) of 3x3 mm(2) active area, and LYSO crystal arrays with different pixel sizes. An exhaustive evaluation in terms of spatial, energy and timing resolution was made for all detector configurations. In some cases, when using pixel sizes different than SiPM active area, a significant amount of scintillation light may spread among several SiPMs. Therefore, we made use of a calibration method considering the different SiPM timing contributions. Best Detector Time Resolution (DTR) of 156 ps FWHM was measured when using 3x3 mm(2) crystal pixels directly coupled to the 3x3 mm(2) SiPMs. However, when using 1.5 mm crystal pixels with the same photosensor array, although we could clearly resolve all crystal pixels, an average DTR of 250 ps FWHM was achieved. We also shed light in this work on the timing dependency of the crystal pixel and photosensor alignment.
- PublicaciónPilot performance of a dedicated prostate PET suitable for diagnosis and biopsy guidance(SpringerOpen (part of Springer Nature), 2020-06-05) Cañizares-Ledo, Gabriel; Gonzalez-Montoro, Andrea; Freire, Marta; Lamprou, Efthymios; Barrio, John; Sánchez Martínez, Filomeno; Benlloch Baviera, Jose María; Hernandez, Liczandro; Moliner Martínez, Laura; Vidal San Sebastián, Luis Fernando; Torres, Irene; Sopena, Pablo; Vera-Donoso, Cesar D.; Bello, Pilar; Barbera, Julio; González Martínez, Antonio Javier; Instituto de Instrumentación para Imagen Molecular; European Commission; Generalitat Valenciana; European Regional Development Fund; Ministerio de Economía y Competitividad[EN] Background: Prostate cancer (PCa) represents one of the most common types of cancers facing the male population. Nowadays, to confirm PCa, systematic or multiparametric MRI-targeted transrectal or transperineal biopsies of the prostate are required. However, due to the lack of an accurate imaging technique capable to precisely locate cancerous cells in the prostate, ultrasound biopsies sample random parts of the prostate and, therefore, it is possible to miss regions where those cancerous cells are present. In spite of the improvement with multiparametric MRI, the low reproducibility of its reading undermines the specificity of the method. Recent development of prostatespecific radiotracers has grown the interest on using positron emission tomography (PET) scanners for this purpose, but technological improvements are still required (current scanners have resolutions in the range of 4¿5 mm). Results: The main goal of this work is to improve state-of-the-art PCa imaging and diagnosis. We have focused our efforts on the design of a novel prostate-dedicated PET scanner, named ProsPET. This system has small scanner dimensions defined by a ring of just 41 cm inner diameter. In this work, we report the design, implementation, and evaluation (both through simulations and real data) of the ProsPET scanner. We have been able to achieve < 2 mm resolution in reconstructed images and high sensitivity. In addition, we have included a comparison with the Philips Gemini-TF scanner, which is used for routine imaging of PCa patients. The ProsPET exhibits better contrast, especially for rod sizes as small as 4.5 mm in diameter. Finally, we also show the first reconstructed image of a PCa patient acquired with the ProsPET. Conclusions: We have designed and built a prostate specific PET system, with a small footprint and improved spatial resolution when compared to conventional whole-body PET scanners. The gamma ray impact within each detector block includes accurate DOI determination, correcting for the parallax error. The potential role of combined organdedicated prostate-specific membrane antigen (PSMA) PET and ultrasound devices, as a prebiopsy diagnostic tool, could be used to guide sampling of the most aggressive sites in the prostate.
- PublicaciónExploring TOF Capabilities of PET Detector Blocks Based on Large Monolithic Crystals and Analog SiPMs(Elsevier, 2020-02) Lamprou, Efthymios; González Martínez, Antonio Javier; Sánchez Martínez, Filomeno; Benlloch Baviera, Jose María; Instituto de Instrumentación para Imagen Molecular; European Commission; Ministerio de Economía y Competitividad[EN] Monolithic scintillators are more frequently used in PET instrumentation due to their advantages in terms of accurate position estimation of the impinging gamma rays both planar and depth of interaction, their increased efficiency, and expected timing capabilities. Such timing performance has been studied when those blocks are coupled to digital photosensors showing an excellent timing resolution. In this work we study the timing behaviour of detectors composed by monolithic crystals and analog SiPMs read out by an ASIC. The scintillation light spreads across the crystal towards the photosensors, resulting in a high number of SiPMs and ASIC channels fired. This has been studied in relation with the Coincidence Timing Resolution (CTR). We have used LYSO monolithic blocks with dimensions of 50 x 50 x 15 mm(3) coupled to SiPM arrays (8 x 8 elements with 6 x 6 mm(2) area) which compose detectors suitable for clinical applications. While a CTR as good as 186 ps FWHM was achieved for a pair of 3 x 3 x 5 mm(3) LYSO crystals, when using the monolithic block and the SiPM arrays, a raw CTR over 1 ns was observed. An optimal timestamp assignment was studied as well as compensation methods for the time-skew and time-walk errors. This work describes all steps followed to improve the CTR. Eventually, an average detector time resolution of 497 ps FWHM was measured for the whole thick monolithic block. This improves to 380 ps FWHM for a central volume of interest near the photosensors. The timing dependency with the photon depth of interaction and planar position are also included.
- PublicaciónProgress report on the MEDAMI 2019 and CTR research at the DMIL in i3M(Società italiana di fisica, 2020-02) González Martínez, Antonio Javier; Barrio, J.; Lamprou, E.; Ilisie, Victor; Sánchez Martínez, Filomeno; Benlloch Baviera, Jose María; Instituto de Instrumentación para Imagen Molecular; European Commission; Ministerio de Economía y Competitividad[EN] This contribution reports on the recently held MEDAMI 2019 workshop in Valencia (15-17th May 2019). This workshop is about advanced molecular imaging and the main topic of this last edition was Imaging in Immunotherapy. Around 70 attenders met together during three days. This meeting made it possible to join medical doctors and instrumentalists. In MEDAMI 2019 it was exposed the new immunotherapies from a clinical and research point of view. It was shown the already observed improvements when using these therapies. At the same time, we heard about the difficulties and limitations of current molecular imaging in this particular field. It was clear that improvements in system sensitivity and resolution are demanded. Timing information can be utilized in different ways to improve the image quality in PET systems. Precise Coincidence Time Resolution (CTR) improves the signal-to-noise ratio and, therefore, the image contrast, allowing for instance to distinguish low uptake tumors, multicentric lesions, or tumor heterogeneity, to name but a few. Both high time resolution and angular coverage in a PET system can improve the effective sensitivity. An example of a system benchmarking the timing resolution is the Siemens Biograph Vision with 214 ps FWHM, enhancing the detectability. The Explorer total-body PET from UC Davis improves the system sensitivity by having a 2 meters long PET scanner. Deep investigations, from different research groups, are being carried out to further push the limits of timing resolution. This work also describes some of the projects on high timing performance that are being carried out at the Detector for Molecular Imaging Lab (DMIL) at the Institute for Instrumentation in Molecular Imaging (i3M) in Valencia. The DMIL group has extensively worked on detectors and implementation of PET systems enabling the use of accurate timing information. In this progress report we describe the results obtained at the DMIL regarding timing determination in gamma-ray detectors both based on monolithic and pixelated crystals. Although with 15 min thick LYSO blocks it was tough to obtain values of CTR below 500 ps when using analog SiPMs and ASIC-based readout, this was improved down to 250 ps if small 3 mm size and 6 mm height pixels under the one-to-one coupling approach were enabled. This type of approach, the one-to-one coupling, seems to benefit from the light collection in a single photosensor element and, therefore, to improve the timing properties. Monolithic blocks offer, on the contrary, advantages such as photon depth of interaction. In order to separate Compton and photoelectric events we have thought of a detector block design with a high aspect ratio, using LYSO crystals of 51 mm size vs. 3 mm thickness, read-out by the four lateral sides. We have demonstrated the possibility to reach below 2 mm FWHM spatial resolution with an energy resolution of 12%.